

Welcome to Pytest-BDD’s documentation!

Contents

	Welcome to Pytest-BDD’s documentation!

	BDD library for the py.test runner

	Install pytest-bdd

	Example

	Scenario decorator

	Step aliases

	Step arguments

	Step arguments are fixtures as well!

	Override fixtures via given steps

	Multiline steps

	Scenarios shortcut

	Scenario outlines

	Feature examples

	Combine scenario outline and pytest parametrization

	Organizing your scenarios

	Test setup

	Backgrounds

	Reusing fixtures

	Reusing steps

	Using unicode in the feature files

	Default steps

	Feature file paths

	Avoid retyping the feature file name

	Hooks

	Browser testing

	Reporting

	Test code generation helpers

	Advanced code generation

	Migration of your tests from versions 3.x.x

	License

	Authors

	Changelog

	4.0.2

	4.0.1

	4.0.0

	3.4.0

	3.3.0

	3.2.1

	3.2.0

	3.1.1

	3.1.0

	3.0.2

	3.0.1

	3.0.0

	2.21.0

	2.20.0

	2.19.0

	2.18.2

	2.18.1

	2.18.0

	2.17.2

	2.17.1

	2.17.0

	2.16.1

	2.16.0

	2.15.0

	2.14.5

	2.14.3

	2.14.1

	2.14.0

	2.13.1

	2.13.0

	2.12.2

	2.11.3

	2.11.1

	2.11.0

	2.10.0

	2.9.1

	2.9.0

	2.8.0

	2.7.2

	2.7.1

	2.7.0

	2.6.2

	2.6.1

	2.5.3

	2.5.2

	2.5.1

	2.5.0

	2.4.5

	2.4.3

	2.4.2

	2.4.1

	2.4.0

	2.3.3

	2.3.2

	2.3.1

	2.1.2

	2.1.1

	2.1.0

	2.0.1

	2.0.0

	1.0.0

	0.6.11

	0.6.9

	0.6.8

	0.6.6

	0.6.5

	0.6.4

	0.6.3

	0.6.2

	0.6.1

	0.6.0

	0.5.2

	0.5.0

	0.4.7

	0.4.6

	0.4.5

	0.4.3

BDD library for the py.test runner

[image: _images/pytest-bdd.svg]
 [https://pypi.python.org/pypi/pytest-bdd][image: _images/badge.svg]
 [https://codecov.io/gh/pytest-dev/pytest-bdd][image: _images/pytest-bdd1.svg]
 [https://travis-ci.org/pytest-dev/pytest-bdd][image: Documentation Status]
 [https://readthedocs.org/projects/pytest-bdd/]pytest-bdd implements a subset of the Gherkin language to enable automating project
requirements testing and to facilitate behavioral driven development.

Unlike many other BDD tools, it does not require a separate runner and benefits from
the power and flexibility of pytest. It enables unifying unit and functional
tests, reduces the burden of continuous integration server configuration and allows the reuse of
test setups.

Pytest fixtures written for unit tests can be reused for setup and actions
mentioned in feature steps with dependency injection. This allows a true BDD
just-enough specification of the requirements without maintaining any context object
containing the side effects of Gherkin imperative declarations.

Install pytest-bdd

pip install pytest-bdd

The minimum required version of pytest is 4.3.

Example

An example test for a blog hosting software could look like this.
Note that pytest-splinter [https://github.com/pytest-dev/pytest-splinter] is used to get the browser fixture.

publish_article.feature:

Feature: Blog
 A site where you can publish your articles.

 Scenario: Publishing the article
 Given I'm an author user
 And I have an article

 When I go to the article page
 And I press the publish button

 Then I should not see the error message
 And the article should be published # Note: will query the database

Note that only one feature is allowed per feature file.

test_publish_article.py:

from pytest_bdd import scenario, given, when, then

@scenario('publish_article.feature', 'Publishing the article')
def test_publish():
 pass

@given("I'm an author user")
def author_user(auth, author):
 auth['user'] = author.user

@given("I have an article", target_fixture="article")
def article(author):
 return create_test_article(author=author)

@when("I go to the article page")
def go_to_article(article, browser):
 browser.visit(urljoin(browser.url, '/manage/articles/{0}/'.format(article.id)))

@when("I press the publish button")
def publish_article(browser):
 browser.find_by_css('button[name=publish]').first.click()

@then("I should not see the error message")
def no_error_message(browser):
 with pytest.raises(ElementDoesNotExist):
 browser.find_by_css('.message.error').first

@then("the article should be published")
def article_is_published(article):
 article.refresh() # Refresh the object in the SQLAlchemy session
 assert article.is_published

Scenario decorator

The scenario decorator can accept the following optional keyword arguments:

	encoding - decode content of feature file in specific encoding. UTF-8 is default.

	example_converters - mapping to pass functions to convert example values provided in feature files.

Functions decorated with the scenario decorator behave like a normal test function,
and they will be executed after all scenario steps.
You can consider it as a normal pytest test function, e.g. order fixtures there,
call other functions and make assertions:

from pytest_bdd import scenario, given, when, then

@scenario('publish_article.feature', 'Publishing the article')
def test_publish(browser):
 assert article.title in browser.html

Step aliases

Sometimes, one has to declare the same fixtures or steps with
different names for better readability. In order to use the same step
function with multiple step names simply decorate it multiple times:

@given("I have an article")
@given("there's an article")
def article(author, target_fixture="article"):
 return create_test_article(author=author)

Note that the given step aliases are independent and will be executed
when mentioned.

For example if you associate your resource to some owner or not. Admin
user can’t be an author of the article, but articles should have a
default author.

Feature: Resource owner
 Scenario: I'm the author
 Given I'm an author
 And I have an article

 Scenario: I'm the admin
 Given I'm the admin
 And there's an article

Step arguments

Often it’s possible to reuse steps giving them a parameter(s).
This allows to have single implementation and multiple use, so less code.
Also opens the possibility to use same step twice in single scenario and with different arguments!
And even more, there are several types of step parameter parsers at your disposal
(idea taken from behave [https://pypi.python.org/pypi/behave] implementation):

	string (the default)

	This is the default and can be considered as a null or exact parser. It parses no parameters
and matches the step name by equality of strings.

	parse (based on: pypi_parse [http://pypi.python.org/pypi/parse])

	Provides a simple parser that replaces regular expressions for
step parameters with a readable syntax like {param:Type}.
The syntax is inspired by the Python builtin string.format()
function.
Step parameters must use the named fields syntax of pypi_parse [http://pypi.python.org/pypi/parse]
in step definitions. The named fields are extracted,
optionally type converted and then used as step function arguments.
Supports type conversions by using type converters passed via extra_types

	cfparse (extends: pypi_parse [http://pypi.python.org/pypi/parse], based on: pypi_parse_type [http://pypi.python.org/pypi/parse_type])

	Provides an extended parser with “Cardinality Field” (CF) support.
Automatically creates missing type converters for related cardinality
as long as a type converter for cardinality=1 is provided.
Supports parse expressions like:
* {values:Type+} (cardinality=1..N, many)
* {values:Type*} (cardinality=0..N, many0)
* {value:Type?} (cardinality=0..1, optional)
Supports type conversions (as above).

	re

	This uses full regular expressions to parse the clause text. You will
need to use named groups “(?P<name>…)” to define the variables pulled
from the text and passed to your step() function.
Type conversion can only be done via converters step decorator argument (see example below).

The default parser is string, so just plain one-to-one match to the keyword definition.
Parsers except string, as well as their optional arguments are specified like:

for cfparse parser

from pytest_bdd import parsers

@given(
 parsers.cfparse("there are {start:Number} cucumbers",
 extra_types=dict(Number=int)),
 target_fixture="start_cucumbers",
)
def start_cucumbers(start):
 return dict(start=start, eat=0)

for re parser

from pytest_bdd import parsers

@given(
 parsers.re(r"there are (?P<start>\d+) cucumbers"),
 converters=dict(start=int),
 target_fixture="start_cucumbers",
)
def start_cucumbers(start):
 return dict(start=start, eat=0)

Example:

Feature: Step arguments
 Scenario: Arguments for given, when, thens
 Given there are 5 cucumbers

 When I eat 3 cucumbers
 And I eat 2 cucumbers

 Then I should have 0 cucumbers

The code will look like:

import re
from pytest_bdd import scenario, given, when, then, parsers

@scenario("arguments.feature", "Arguments for given, when, thens")
def test_arguments():
 pass

@given(parsers.parse("there are {start:d} cucumbers"), target_fixture="start_cucumbers")
def start_cucumbers(start):
 return dict(start=start, eat=0)

@when(parsers.parse("I eat {eat:d} cucumbers"))
def eat_cucumbers(start_cucumbers, eat):
 start_cucumbers["eat"] += eat

@then(parsers.parse("I should have {left:d} cucumbers"))
def should_have_left_cucumbers(start_cucumbers, start, left):
 assert start_cucumbers['start'] == start
 assert start - start_cucumbers['eat'] == left

Example code also shows possibility to pass argument converters which may be useful if you need to postprocess step
arguments after the parser.

You can implement your own step parser. It’s interface is quite simple. The code can looks like:

import re
from pytest_bdd import given, parsers

class MyParser(parsers.StepParser):
 """Custom parser."""

 def __init__(self, name, **kwargs):
 """Compile regex."""
 super(re, self).__init__(name)
 self.regex = re.compile(re.sub("%(.+)%", "(?P<\1>.+)", self.name), **kwargs)

 def parse_arguments(self, name):
 """Get step arguments.

 :return: `dict` of step arguments
 """
 return self.regex.match(name).groupdict()

 def is_matching(self, name):
 """Match given name with the step name."""
 return bool(self.regex.match(name))

@given(parsers.parse("there are %start% cucumbers"), target_fixture="start_cucumbers")
def start_cucumbers(start):
 return dict(start=start, eat=0)

Step arguments are fixtures as well!

Step arguments are injected into pytest request context as normal fixtures with the names equal to the names of the
arguments. This opens a number of possibilies:

	you can access step’s argument as a fixture in other step function just by mentioning it as an argument (just like any othe pytest fixture)

	if the name of the step argument clashes with existing fixture, it will be overridden by step’s argument value; this way you can set/override the value for some fixture deeply inside of the fixture tree in a ad-hoc way by just choosing the proper name for the step argument.

Override fixtures via given steps

Dependency injection is not a panacea if you have complex structure of your test setup data. Sometimes there’s a need
such a given step which would imperatively change the fixture only for certain test (scenario), while for other tests
it will stay untouched. To allow this, special parameter target_fixture exists in the given decorator:

from pytest_bdd import given

@pytest.fixture
def foo():
 return "foo"

@given("I have injecting given", target_fixture="foo")
def injecting_given():
 return "injected foo"

@then('foo should be "injected foo"')
def foo_is_foo(foo):
 assert foo == 'injected foo'

Feature: Target fixture
 Scenario: Test given fixture injection
 Given I have injecting given
 Then foo should be "injected foo"

In this example existing fixture foo will be overridden by given step I have injecting given only for scenario it’s
used in.

Multiline steps

As Gherkin, pytest-bdd supports multiline steps
(aka PyStrings [http://behat.org/en/v3.0/user_guide/writing_scenarios.html#pystrings]).
But in much cleaner and powerful way:

Feature: Multiline steps
 Scenario: Multiline step using sub indentation
 Given I have a step with:
 Some
 Extra
 Lines
 Then the text should be parsed with correct indentation

Step is considered as multiline one, if the next line(s) after it’s first line, is indented relatively
to the first line. The step name is then simply extended by adding further lines with newlines.
In the example above, the Given step name will be:

'I have a step with:\nSome\nExtra\nLines'

You can of course register step using full name (including the newlines), but it seems more practical to use
step arguments and capture lines after first line (or some subset of them) into the argument:

import re

from pytest_bdd import given, then, scenario

@scenario(
 'multiline.feature',
 'Multiline step using sub indentation',
)
def test_multiline():
 pass

@given(parsers.parse("I have a step with:\n{text}"), target_fixture="i_have_text")
def i_have_text(text):
 return text

@then("the text should be parsed with correct indentation")
def text_should_be_correct(i_have_text, text):
 assert i_have_text == text == 'Some\nExtra\nLines'

Note that then step definition (text_should_be_correct) in this example uses text fixture which is provided
by a a given step (i_have_text) argument with the same name (text). This possibility is described in
the Step arguments are fixtures as well! section.

Scenarios shortcut

If you have relatively large set of feature files, it’s boring to manually bind scenarios to the tests using the
scenario decorator. Of course with the manual approach you get all the power to be able to additionally parametrize
the test, give the test function a nice name, document it, etc, but in the majority of the cases you don’t need that.
Instead you want to bind all scenarios found in the feature folder(s) recursively automatically.
For this - there’s a scenarios helper.

from pytest_bdd import scenarios

assume 'features' subfolder is in this file's directory
scenarios('features')

That’s all you need to do to bind all scenarios found in the features folder!
Note that you can pass multiple paths, and those paths can be either feature files or feature folders.

from pytest_bdd import scenarios

pass multiple paths/files
scenarios('features', 'other_features/some.feature', 'some_other_features')

But what if you need to manually bind certain scenario, leaving others to be automatically bound?
Just write your scenario in a normal way, but ensure you do it BEFORE the call of scenarios helper.

from pytest_bdd import scenario, scenarios

@scenario('features/some.feature', 'Test something')
def test_something():
 pass

assume 'features' subfolder is in this file's directory
scenarios('features')

In the example above test_something scenario binding will be kept manual, other scenarios found in the features
folder will be bound automatically.

Scenario outlines

Scenarios can be parametrized to cover few cases. In Gherkin the variable
templates are written using corner braces as <somevalue>.
Gherkin scenario outlines [http://behat.org/en/v3.0/user_guide/writing_scenarios.html#scenario-outlines] are supported by pytest-bdd
exactly as it’s described in be behave [https://pypi.python.org/pypi/behave] docs.

Example:

Feature: Scenario outlines
 Scenario Outline: Outlined given, when, thens
 Given there are <start> cucumbers
 When I eat <eat> cucumbers
 Then I should have <left> cucumbers

 Examples:
 | start | eat | left |
 | 12 | 5 | 7 |

pytest-bdd feature file format also supports example tables in different way:

Feature: Scenario outlines
 Scenario Outline: Outlined given, when, thens
 Given there are <start> cucumbers
 When I eat <eat> cucumbers
 Then I should have <left> cucumbers

 Examples: Vertical
 | start | 12 | 2 |
 | eat | 5 | 1 |
 | left | 7 | 1 |

This form allows to have tables with lots of columns keeping the maximum text width predictable without significant
readability change.

The code will look like:

from pytest_bdd import given, when, then, scenario

@scenario(
 "outline.feature",
 "Outlined given, when, thens",
 example_converters=dict(start=int, eat=float, left=str)
)
def test_outlined():
 pass

@given("there are <start> cucumbers", target_fixture="start_cucumbers")
def start_cucumbers(start):
 assert isinstance(start, int)
 return dict(start=start)

@when("I eat <eat> cucumbers")
def eat_cucumbers(start_cucumbers, eat):
 assert isinstance(eat, float)
 start_cucumbers["eat"] = eat

@then("I should have <left> cucumbers")
def should_have_left_cucumbers(start_cucumbers, start, eat, left):
 assert isinstance(left, str)
 assert start - eat == int(left)
 assert start_cucumbers["start"] == start
 assert start_cucumbers["eat"] == eat

Example code also shows possibility to pass example converters which may be useful if you need parameter types
different than strings.

Feature examples

It’s possible to declare example table once for the whole feature, and it will be shared
among all the scenarios of that feature:

Feature: Outline

 Examples:
 | start | eat | left |
 | 12 | 5 | 7 |
 | 5 | 4 | 1 |

 Scenario Outline: Eat cucumbers
 Given there are <start> cucumbers
 When I eat <eat> cucumbers
 Then I should have <left> cucumbers

 Scenario Outline: Eat apples
 Given there are <start> apples
 When I eat <eat> apples
 Then I should have <left> apples

For some more complex case, you might want to parametrize on both levels: feature and scenario.
This is allowed as long as parameter names do not clash:

Feature: Outline

 Examples:
 | start | eat | left |
 | 12 | 5 | 7 |
 | 5 | 4 | 1 |

 Scenario Outline: Eat fruits
 Given there are <start> <fruits>
 When I eat <eat> <fruits>
 Then I should have <left> <fruits>

 Examples:
 | fruits |
 | oranges |
 | apples |

 Scenario Outline: Eat vegetables
 Given there are <start> <vegetables>
 When I eat <eat> <vegetables>
 Then I should have <left> <vegetables>

 Examples:
 | vegetables |
 | carrots |
 | tomatoes |

Combine scenario outline and pytest parametrization

It’s also possible to parametrize the scenario on the python side.
The reason for this is that it is sometimes not needed to mention example table for every scenario.

The code will look like:

import pytest
from pytest_bdd import scenario, given, when, then

Here we use pytest to parametrize the test with the parameters table
@pytest.mark.parametrize(
 ["start", "eat", "left"],
 [(12, 5, 7)],
)
@scenario(
 "parametrized.feature",
 "Parametrized given, when, thens",
)
Note that we should take the same arguments in the test function that we use
for the test parametrization either directly or indirectly (fixtures depend on them).
def test_parametrized(start, eat, left):
 """We don't need to do anything here, everything will be managed by the scenario decorator."""

@given("there are <start> cucumbers", target_fixture="start_cucumbers")
def start_cucumbers(start):
 return dict(start=start)

@when("I eat <eat> cucumbers")
def eat_cucumbers(start_cucumbers, start, eat):
 start_cucumbers["eat"] = eat

@then("I should have <left> cucumbers")
def should_have_left_cucumbers(start_cucumbers, start, eat, left):
 assert start - eat == left
 assert start_cucumbers["start"] == start
 assert start_cucumbers["eat"] == eat

With a parametrized.feature file:

Feature: parametrized
 Scenario: Parametrized given, when, thens
 Given there are <start> cucumbers
 When I eat <eat> cucumbers
 Then I should have <left> cucumbers

The significant downside of this approach is inability to see the test table from the feature file.

Organizing your scenarios

The more features and scenarios you have, the more important becomes the question about their organization.
The things you can do (and that is also a recommended way):

	organize your feature files in the folders by semantic groups:

features
│
├──frontend
│ │
│ └──auth
│ │
│ └──login.feature
└──backend
 │
 └──auth
 │
 └──login.feature

This looks fine, but how do you run tests only for certain feature?
As pytest-bdd uses pytest, and bdd scenarios are actually normal tests. But test files
are separate from the feature files, the mapping is up to developers, so the test files structure can look
completely different:

tests
│
└──functional
 │
 └──test_auth.py
 │
 └ """Authentication tests."""
 from pytest_bdd import scenario

 @scenario('frontend/auth/login.feature')
 def test_logging_in_frontend():
 pass

 @scenario('backend/auth/login.feature')
 def test_logging_in_backend():
 pass

For picking up tests to run we can use
tests selection [http://pytest.org/latest/usage.html#specifying-tests-selecting-tests] technique. The problem is that
you have to know how your tests are organized, knowing only the feature files organization is not enough.
cucumber tags [https://github.com/cucumber/cucumber/wiki/Tags] introduce standard way of categorizing your features
and scenarios, which pytest-bdd supports. For example, we could have:

@login @backend
Feature: Login

 @successful
 Scenario: Successful login

pytest-bdd uses pytest markers [http://pytest.org/latest/mark.html#mark] as a storage of the tags for the given
scenario test, so we can use standard test selection:

py.test -m "backend and login and successful"

The feature and scenario markers are not different from standard pytest markers, and the @ symbol is stripped out
automatically to allow test selector expressions. If you want to have bdd-related tags to be distinguishable from the
other test markers, use prefix like bdd.
Note that if you use pytest –strict option, all bdd tags mentioned in the feature files should be also in the
markers setting of the pytest.ini config. Also for tags please use names which are python-compartible variable
names, eg starts with a non-number, underscore alphanumberic, etc. That way you can safely use tags for tests filtering.

You can customize how hooks are converted to pytest marks by implementing the
pytest_bdd_apply_tag hook and returning True from it:

def pytest_bdd_apply_tag(tag, function):
 if tag == 'todo':
 marker = pytest.mark.skip(reason="Not implemented yet")
 marker(function)
 return True
 else:
 # Fall back to pytest-bdd's default behavior
 return None

Test setup

Test setup is implemented within the Given section. Even though these steps
are executed imperatively to apply possible side-effects, pytest-bdd is trying
to benefit of the PyTest fixtures which is based on the dependency injection
and makes the setup more declarative style.

@given("I have a beautiful article", target_fixture="article")
def article():
 return Article(is_beautiful=True)

The target PyTest fixture “article” gets the return value and any other step can depend on it.

Feature: The power of PyTest
 Scenario: Symbolic name across steps
 Given I have a beautiful article
 When I publish this article

When step is referring the article to publish it.

@when("I publish this article")
def publish_article(article):
 article.publish()

Many other BDD toolkits operate a global context and put the side effects there.
This makes it very difficult to implement the steps, because the dependencies
appear only as the side-effects in the run-time and not declared in the code.
The publish article step has to trust that the article is already in the context,
has to know the name of the attribute it is stored there, the type etc.

In pytest-bdd you just declare an argument of the step function that it depends on
and the PyTest will make sure to provide it.

Still side effects can be applied in the imperative style by design of the BDD.

Feature: News website
 Scenario: Publishing an article
 Given I have a beautiful article
 And my article is published

Functional tests can reuse your fixture libraries created for the unit-tests and upgrade
them by applying the side effects.

@pytest.fixture
def article():
 return Article(is_beautiful=True)

@given("I have a beautiful article")
def i_have_a_beautiful_article(article):
 pass

@given("my article is published")
def published_article(article):
 article.publish()
 return article

This way side-effects were applied to our article and PyTest makes sure that all
steps that require the “article” fixture will receive the same object. The value
of the “published_article” and the “article” fixtures is the same object.

Fixtures are evaluated only once within the PyTest scope and their values are cached.

Backgrounds

It’s often the case that to cover certain feature, you’ll need multiple scenarios. And it’s logical that the
setup for those scenarios will have some common parts (if not equal). For this, there are backgrounds.
pytest-bdd implements Gherkin backgrounds [http://behat.org/en/v3.0/user_guide/writing_scenarios.html#backgrounds] for
features.

Feature: Multiple site support

 Background:
 Given a global administrator named "Greg"
 And a blog named "Greg's anti-tax rants"
 And a customer named "Wilson"
 And a blog named "Expensive Therapy" owned by "Wilson"

 Scenario: Wilson posts to his own blog
 Given I am logged in as Wilson
 When I try to post to "Expensive Therapy"
 Then I should see "Your article was published."

 Scenario: Greg posts to a client's blog
 Given I am logged in as Greg
 When I try to post to "Expensive Therapy"
 Then I should see "Your article was published."

In this example, all steps from the background will be executed before all the scenario’s own given
steps, adding possibility to prepare some common setup for multiple scenarios in a single feature.
About background best practices, please read
here [https://github.com/cucumber/cucumber/wiki/Background#good-practices-for-using-background].

Note

There is only step “Given” should be used in “Background” section,
steps “When” and “Then” are prohibited, because their purpose are
related to actions and consuming outcomes, that is conflict with
“Background” aim - prepare system for tests or “put the system
in a known state” as “Given” does it.
The statement above is applied for strict Gherkin mode, which is
enabled by default.

Reusing fixtures

Sometimes scenarios define new names for the existing fixture that can be
inherited (reused). For example, if we have pytest fixture:

@pytest.fixture
def article():
 """Test article."""
 return Article()

Then this fixture can be reused with other names using given():

@given('I have beautiful article')
def i_have_an_article(article):
 """I have an article."""

Reusing steps

It is possible to define some common steps in the parent conftest.py and
simply expect them in the child test file.

common_steps.feature:

Scenario: All steps are declared in the conftest
 Given I have a bar
 Then bar should have value "bar"

conftest.py:

from pytest_bdd import given, then

@given("I have a bar", target_fixture="bar")
def bar():
 return "bar"

@then('bar should have value "bar"')
def bar_is_bar(bar):
 assert bar == "bar"

test_common.py:

@scenario("common_steps.feature", "All steps are declared in the conftest")
def test_conftest():
 pass

There are no definitions of the steps in the test file. They were
collected from the parent conftests.

Using unicode in the feature files

As mentioned above, by default, utf-8 encoding is used for parsing feature files.
For steps definition, you should use unicode strings, which is the default in python 3.
If you are on python 2, make sure you use unicode strings by prefixing them with the u sign.

@given(parsers.re(u"у мене є рядок який містить '{0}'".format(u'(?P<content>.+)')))
def there_is_a_string_with_content(content, string):
 """Create string with unicode content."""
 string["content"] = content

Default steps

Here is the list of steps that are implemented inside of the pytest-bdd:

	given

	
	trace - enters the pdb debugger via pytest.set_trace()

	when

	
	trace - enters the pdb debugger via pytest.set_trace()

	then

	
	trace - enters the pdb debugger via pytest.set_trace()

Feature file paths

By default, pytest-bdd will use current module’s path as base path for finding feature files, but this behaviour can be changed in the pytest configuration file (i.e. pytest.ini, tox.ini or setup.cfg) by declaring the new base path in the bdd_features_base_dir key. The path is interpreted as relative to the working directory when starting pytest.
You can also override features base path on a per-scenario basis, in order to override the path for specific tests.

pytest.ini:

[pytest]
bdd_features_base_dir = features/

tests/test_publish_article.py:

from pytest_bdd import scenario

@scenario("foo.feature", "Foo feature in features/foo.feature")
def test_foo():
 pass

@scenario(
 "foo.feature",
 "Foo feature in tests/local-features/foo.feature",
 features_base_dir="./local-features/",
)
def test_foo_local():
 pass

The features_base_dir parameter can also be passed to the @scenario decorator.

Avoid retyping the feature file name

If you want to avoid retyping the feature file name when defining your scenarios in a test file, use functools.partial.
This will make your life much easier when defining multiple scenarios in a test file. For example:

test_publish_article.py:

from functools import partial

import pytest_bdd

scenario = partial(pytest_bdd.scenario, "/path/to/publish_article.feature")

@scenario("Publishing the article")
def test_publish():
 pass

@scenario("Publishing the article as unprivileged user")
def test_publish_unprivileged():
 pass

You can learn more about functools.partial [http://docs.python.org/2/library/functools.html#functools.partial]
in the Python docs.

Hooks

pytest-bdd exposes several pytest hooks [http://pytest.org/latest/plugins.html#well-specified-hooks]
which might be helpful building useful reporting, visualization, etc on top of it:

	pytest_bdd_before_scenario(request, feature, scenario) - Called before scenario is executed

	pytest_bdd_after_scenario(request, feature, scenario) - Called after scenario is executed
(even if one of steps has failed)

	pytest_bdd_before_step(request, feature, scenario, step, step_func) - Called before step function
is executed and it’s arguments evaluated

	pytest_bdd_before_step_call(request, feature, scenario, step, step_func, step_func_args) - Called before step
function is executed with evaluated arguments

	pytest_bdd_after_step(request, feature, scenario, step, step_func, step_func_args) - Called after step function
is successfully executed

	pytest_bdd_step_error(request, feature, scenario, step, step_func, step_func_args, exception) - Called when step
function failed to execute

	pytest_bdd_step_func_lookup_error(request, feature, scenario, step, exception) - Called when step lookup failed

Browser testing

Tools recommended to use for browser testing:

	pytest-splinter [https://github.com/pytest-dev/pytest-splinter] - pytest splinter [http://splinter.cobrateam.info/] integration for the real browser testing

Reporting

It’s important to have nice reporting out of your bdd tests. Cucumber introduced some kind of standard for
json format [https://www.relishapp.com/cucumber/cucumber/docs/json-output-formatter]
which can be used for this [https://wiki.jenkins-ci.org/display/JENKINS/Cucumber+Test+Result+Plugin] jenkins
plugin

To have an output in json format:

py.test --cucumberjson=<path to json report>

This will output an expanded (meaning scenario outlines will be expanded to several scenarios) cucumber format.
To also fill in parameters in the step name, you have to explicitly tell pytest-bdd to use the expanded format:

py.test --cucumberjson=<path to json report> --cucumberjson-expanded

To enable gherkin-formatted output on terminal, use

py.test --gherkin-terminal-reporter

Terminal reporter supports expanded format as well

py.test --gherkin-terminal-reporter-expanded

Test code generation helpers

For newcomers it’s sometimes hard to write all needed test code without being frustrated.
To simplify their life, simple code generator was implemented. It allows to create fully functional
but of course empty tests and step definitions for given a feature file.
It’s done as a separate console script provided by pytest-bdd package:

pytest-bdd generate <feature file name> .. <feature file nameN>

It will print the generated code to the standard output so you can easily redirect it to the file:

pytest-bdd generate features/some.feature > tests/functional/test_some.py

Advanced code generation

For more experienced users, there’s smart code generation/suggestion feature. It will only generate the
test code which is not yet there, checking existing tests and step definitions the same way it’s done during the
test execution. The code suggestion tool is called via passing additional pytest arguments:

py.test --generate-missing --feature features tests/functional

The output will be like:

============================= test session starts ==============================
platform linux2 -- Python 2.7.6 -- py-1.4.24 -- pytest-2.6.2
plugins: xdist, pep8, cov, cache, bdd, bdd, bdd
collected 2 items

Scenario is not bound to any test: "Code is generated for scenarios which are not bound to any tests" in feature "Missing code generation" in /tmp/pytest-552/testdir/test_generate_missing0/tests/generation.feature
--

Step is not defined: "I have a custom bar" in scenario: "Code is generated for scenario steps which are not yet defined(implemented)" in feature "Missing code generation" in /tmp/pytest-552/testdir/test_generate_missing0/tests/generation.feature
--
Please place the code above to the test file(s):

@scenario('tests/generation.feature', 'Code is generated for scenarios which are not bound to any tests')
def test_Code_is_generated_for_scenarios_which_are_not_bound_to_any_tests():
 """Code is generated for scenarios which are not bound to any tests."""

@given("I have a custom bar")
def I_have_a_custom_bar():
 """I have a custom bar."""

As as side effect, the tool will validate the files for format errors, also some of the logic bugs, for example the
ordering of the types of the steps.

Migration of your tests from versions 3.x.x

Given steps are no longer fixtures. In case it is needed to make given step setup a fixture
the target_fixture parameter should be used.

@given("there's an article", target_fixture="article")
def there_is_an_article():
 return Article()

Given steps no longer have fixture parameter. In fact the step may depend on multiple fixtures.
Just normal step declaration with the dependency injection should be used.

@given("there's an article")
def there_is_an_article(article):
 pass

Strict gherkin option is removed, so the strict_gherkin parameter can be removed from the scenario decorators
as well as bdd_strict_gherkin from the ini files.

Step validation handlers for the hook pytest_bdd_step_validation_error should be removed.

License

This software is licensed under the MIT license [http://en.wikipedia.org/wiki/MIT_License].

© 2013-2014 Oleg Pidsadnyi, Anatoly Bubenkov and others

Authors

	Oleg Pidsadnyi

	original idea, initial implementation and further improvements

	Anatoly Bubenkov

	key implementation idea and realization, many new features and improvements

These people have contributed to pytest-bdd, in alphabetical order:

	Adam Coddington

	Albert-Jan Nijburg

	Alessio Bogon

	Andrey Makhnach

	Aron Curzon

	Dmitrijs Milajevs

	Dmitry Kolyagin

	Florian Bruhin

	Floris Bruynooghe

	Harro van der Klauw

	Hugo van Kemenade [https://github.com/hugovk]

	Laurence Rowe

	Leonardo Santagada

	Milosz Sliwinski

	Michiel Holtkamp

	Robin Pedersen

	Sergey Kraynev

Changelog

4.0.2

	Fix a bug that prevents using comments in the Examples: section. (youtux)

4.0.1

	Fixed performance regression introduced in 4.0.0 where collection time of tests would take way longer than before. (youtux)

4.0.0

This release introduces breaking changes, please refer to the Migration of your tests from versions 3.x.x.

	Strict Gherkin option is removed (@scenario() does not accept the strict_gherkin parameter). (olegpidsadnyi)

	@scenario() does not accept the undocumented parameter caller_module anymore. (youtux)

	Given step is no longer a fixture. The scope parameter is also removed. (olegpidsadnyi)

	Fixture parameter is removed from the given step declaration. (olegpidsadnyi)

	pytest_bdd_step_validation_error hook is removed. (olegpidsadnyi)

	Fix an error with pytest-pylint plugin #374. (toracle)

	Fix pytest-xdist 2.0 compatibility #369. (olegpidsadnyi)

	Fix compatibility with pytest 6 --import-mode=importlib option. (youtux)

3.4.0

	Parse multiline steps according to the gherkin specification #365.

3.3.0

	Drop support for pytest < 4.3.

	Fix a Python 4.0 bug.

	Fix pytest --generate-missing functionality being broken.

	Fix problematic missing step definition from strings containing quotes.

	Implement parsing escaped pipe characters in outline parameters (Mark90) #337.

	Disable the strict Gherkin validation in the steps generation (v-buriak) #356.

3.2.1

	Fix regression introduced in 3.2.0 where pytest-bdd would break in presence of test items that are not functions.

3.2.0

	Fix Python 3.8 support

	Remove code that rewrites code. This should help with the maintenance of this project and make debugging easier.

3.1.1

	Allow unicode string in @given() step names when using python2.
This makes the transition of projects from python 2 to 3 easier.

3.1.0

	Drop support for pytest < 3.3.2.

	Step definitions generated by $ pytest-bdd generate will now raise NotImplementedError by default.

	@given(...) no longer accepts regex objects. It was deprecated long ago.

	Improve project testing by treating warnings as exceptions.

	pytest_bdd_step_validation_error will now always receive step_func_args as defined in the signature.

3.0.2

	Add compatibility with pytest 4.2 (sliwinski-milosz) #288.

3.0.1

	Minimal supported version of pytest is now 2.9.0 as lower versions do not support bool type ini options (sliwinski-milosz) #260

	Fix RemovedInPytest4Warning warnings (sliwinski-milosz) #261.

3.0.0

	Fixtures pytestbdd_feature_base_dir and pytestbdd_strict_gherkin have been removed. Check the Migration of your tests from versions 2.x.x for more information (sliwinski-milosz) #255

	Fix step definitions not being found when using parsers or converters after a change in pytest (youtux) #257

2.21.0

	Gherkin terminal reporter expanded format (pauk-slon)

2.20.0

	Added support for But steps (olegpidsadnyi)

	Fixed compatibility with pytest 3.3.2 (olegpidsadnyi)

	MInimal required version of pytest is now 2.8.1 since it doesn’t support earlier versions (olegpidsadnyi)

2.19.0

	Added –cucumber-json-expanded option for explicit selection of expanded format (mjholtkamp)

	Step names are filled in when –cucumber-json-expanded is used (mjholtkamp)

2.18.2

	Fix check for out section steps definitions for no strict gherkin feature

2.18.1

	Relay fixture results to recursive call of ‘get_features’ (coddingtonbear)

2.18.0

	Add gherkin terminal reporter (spinus + thedrow)

2.17.2

	Fix scenario lines containing an @ being parsed as a tag. (The-Compiler)

2.17.1

	Add support for pytest 3.0

2.17.0

	Fix FixtureDef signature for newer pytest versions (The-Compiler)

	Better error explanation for the steps defined outside of scenarios (olegpidsadnyi)

	Add a pytest_bdd_apply_tag hook to customize handling of tags (The-Compiler)

	Allow spaces in tag names. This can be useful when using the
pytest_bdd_apply_tag hook with tags like @xfail: Some reason.

2.16.1

	Cleaned up hooks of the plugin (olegpidsadnyi)

	Fixed report serialization (olegpidsadnyi)

2.16.0

	Fixed deprecation warnings with pytest 2.8 (The-Compiler)

	Fixed deprecation warnings with Python 3.5 (The-Compiler)

2.15.0

	Add examples data in the scenario report (bubenkoff)

2.14.5

	Properly parse feature description (bubenkoff)

2.14.3

	Avoid potentially random collection order for xdist compartibility (bubenkoff)

2.14.1

	Pass additional arguments to parsers (bubenkoff)

2.14.0

	Add validation check which prevents having multiple features in a single feature file (bubenkoff)

2.13.1

	Allow mixing feature example table with scenario example table (bubenkoff, olegpidsadnyi)

2.13.0

	Feature example table (bubenkoff, sureshvv)

2.12.2

	Make it possible to relax strict Gherkin scenario validation (bubenkoff)

2.11.3

	Fix minimal six version (bubenkoff, dustinfarris)

2.11.1

	Mention step type on step definition not found errors and in code generation (bubenkoff, lrowe)

2.11.0

	Prefix step definition fixture names to avoid name collisions (bubenkoff, lrowe)

2.10.0

	Make feature and scenario tags to be fully compartible with pytest markers (bubenkoff, kevinastone)

2.9.1

	Fixed FeatureError string representation to correctly support python3 (bubenkoff, lrowe)

2.9.0

	Added possibility to inject fixtures from given keywords (bubenkoff)

2.8.0

	Added hook before the step is executed with evaluated parameters (olegpidsadnyi)

2.7.2

	Correct base feature path lookup for python3 (bubenkoff)

2.7.1

	Allow to pass scope for given steps (bubenkoff, sureshvv)

2.7.0

	Implemented scenarios shortcut to automatically bind scenarios to tests (bubenkoff)

2.6.2

	Parse comments only in the begining of words (santagada)

2.6.1

	Correctly handle pytest-bdd command called without the subcommand under python3 (bubenkoff, spinus)

	Pluggable parsers for step definitions (bubenkoff, spinus)

2.5.3

	Add after scenario hook, document both before and after scenario hooks (bubenkoff)

2.5.2

	Fix code generation steps ordering (bubenkoff)

2.5.1

	Fix error report serialization (olegpidsadnyi)

2.5.0

	Fix multiline steps in the Background section (bubenkoff, arpe)

	Code cleanup (olegpidsadnyi)

2.4.5

	Fix unicode issue with scenario name (bubenkoff, aohontsev)

2.4.3

	Fix unicode regex argumented steps issue (bubenkoff, aohontsev)

	Fix steps timings in the json reporting (bubenkoff)

2.4.2

	Recursion is fixed for the –generate-missing and the –feature parameters (bubenkoff)

2.4.1

	Better reporting of a not found scenario (bubenkoff)

	Simple test code generation implemented (bubenkoff)

	Correct timing values for cucumber json reporting (bubenkoff)

	Validation/generation helpers (bubenkoff)

2.4.0

	Background support added (bubenkoff)

	Fixed double collection of the conftest files if scenario decorator is used (ropez, bubenkoff)

2.3.3

	Added timings to the cucumber json report (bubenkoff)

2.3.2

	Fixed incorrect error message using e.argname instead of step.name (hvdklauw)

2.3.1

	Implemented cucumber tags support (bubenkoff)

	Implemented cucumber json formatter (bubenkoff, albertjan)

	Added ‘trace’ keyword (bubenkoff)

2.1.2

	Latest pytest compartibility fixes (bubenkoff)

2.1.1

	Bugfixes (bubenkoff)

2.1.0

	Implemented multiline steps (bubenkoff)

2.0.1

	Allow more than one parameter per step (bubenkoff)

	Allow empty example values (bubenkoff)

2.0.0

	Pure pytest parametrization for scenario outlines (bubenkoff)

	Argumented steps now support converters (transformations) (bubenkoff)

	scenario supports only decorator form (bubenkoff)

	Code generation refactoring and cleanup (bubenkoff)

1.0.0

	Implemented scenario outlines (bubenkoff)

0.6.11

	Fixed step arguments conflict with the fixtures having the same name (olegpidsadnyi)

0.6.9

	Implemented support of Gherkin “Feature:” (olegpidsadnyi)

0.6.8

	Implemented several hooks to allow reporting/error handling (bubenkoff)

0.6.6

	Fixes to unnecessary mentioning of pytest-bdd package files in py.test log with -v (bubenkoff)

0.6.5

	Compartibility with recent pytest (bubenkoff)

0.6.4

	More unicode fixes (amakhnach)

0.6.3

	Added unicode support for feature files. Removed buggy module replacement for scenario. (amakhnach)

0.6.2

	Removed unnecessary mention of pytest-bdd package files in py.test log with -v (bubenkoff)

0.6.1

	Step arguments in whens when there are no given arguments used. (amakhnach, bubenkoff)

0.6.0

	Added step arguments support. (curzona, olegpidsadnyi, bubenkoff)

	Added checking of the step type order. (markon, olegpidsadnyi)

0.5.2

	Added extra info into output when FeatureError exception raises. (amakhnach)

0.5.0

	Added parametrization to scenarios

	Coveralls.io integration

	Test coverage improvement/fixes

	Correct wrapping of step functions to preserve function docstring

0.4.7

	Fixed Python 3.3 support

0.4.6

	Fixed a bug when py.test –fixtures showed incorrect filenames for the steps.

0.4.5

	Fixed a bug with the reuse of the fixture by given steps being evaluated multiple times.

0.4.3

	Update the license file and PYPI related documentation.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to Pytest-BDD’s documentation!

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

